

Improved Standard Products®

SD5000/5001/5400/5401

QUAD N-CHANNEL LATERAL DMOS SWITCH ZENER PROTECTED

Product Summary

Part Number	V _{(BR)DS} Min (V)	V _{GS(th)} Max (V)	r _{DS(on)} Max (Ω)	C _{rss} Max (pF)	ton Max (ns)
SD5000I	20	1.5	70 @ V _{GS} = 5 V	0.5	2
SD5000N	20	1.5	70 @ V _{GS} = 5 V	0.5	2
SD5001N	10	1.5	70 @ V _{GS} = 5 V	0.5	2
SD5400CY	20	1.5	75 @ V _{GS} = 5 V	0.5	2
SD5401CY	10	1.5	75 @ V _{GS} = 5 V	0.5	2

Features

- Quad SPST Switch with Zener Input Protection
- Low Interelectrode Capacitance and Leakage
- Ultra-High Speed Switching—ton: 1 ns
- Ultra-Low Reverse Capacitance: 0.2 pF
- Low Guaranteed rDS @5 V
- Low Turn-On Threshold Voltage

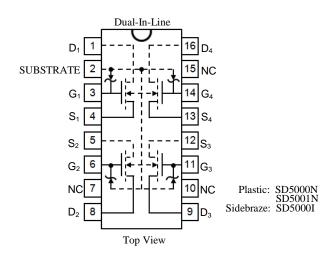
Benefits

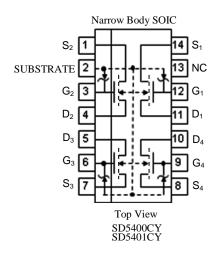
- High-Speed System Performance
- Low Insertion Loss at High Frequencies
- Low Transfer Signal Loss
- Simple Driver Requirement
- Single Supply Operation

Applications

- Fast Analog Switch
- Fast Sample-and-Holds
- Pixel-Rate Switching
- Video Switch
- Multiplexer
- DAC Deglitchers
- High-Speed Driver

Description


The SD5000/5400 series of monolithic switches features four individual double-diffused enhancement-mode MOSFETs built on a common substrate. These bidirectional devices provide low on-resistance and low interelectrode capacitances to minimize insertion loss and crosstalk.


Built on Siliconix' proprietary DMOS process, the SD5000/5400 series utilizes lateral construction to achieve low capacitance and

ultra-fast switching speeds. For manufacturing reliability, these devices feature poly-silicon gates protected by Zener diodes

The SD 5000/5400 are rated to handle ± 10 -V analog signals, while the SD5001/5401 are rated for ± 5 -V signals.

For similar products packaged in TO-206AF (TO-72) and TO-253 (SOT-143) see the SD211DE/SST211 series.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ Unless Otherwise Noted)

Gate-Drain, Gate-Source Voltage		
(SD5000, SD5400)		+30V/-25V
(SD5001, SD5401)		+25V/-15V
Gate-Substrate Voltage	(SD5000, SD5400)	+30V/-0.3V
	(SD5001I, SD5401)	+25V/-0.3V
Drain-Source Voltage	(SD5000, SD5400)	20V
_	(SD5001I, SD5401)	10V
Drain-Source-Substrate Voltage	(SD5000, SD5400)	25V
_	(SD5001I, SD5401)	15V

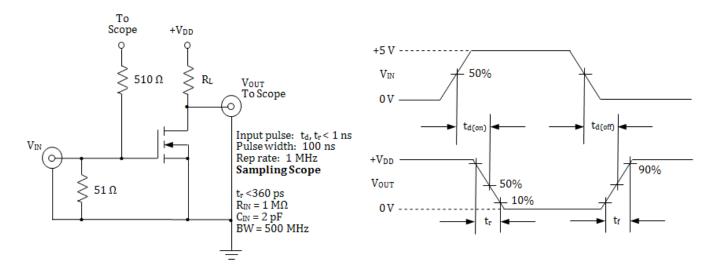
Drain Current		50 mA
Lead Temperature (1/16	300°C	
Storage Temperature		65 to 150°C
Operating Junction Tem	perature	55 to 150°C
Power Dissipation":	(Package)	500 mW
-	(each Device)	300 mW

Notes:

- a. SD5000/SD5001I derate 5 mW/C above 25°C
- b. SD5400/SD5401 derate 4 mW/C above 25°C

$Specifications^{a} \\$

					Limits				_
					SD5000 SD5400		SD5001 SD5401		
Parameter	Symbolb	Test Con	Typc	Min	Max	Min	Max	Unit	
Static									
Drain-Source Breakdown Voltage	$V_{(BR)DS}$	$V_{GS}=V_{BS}=-5$	V , $I_D=10nA$	30	20		10		
Source-Drain Breakdown Voltage	$V_{(BR)SD}$	$V_{GD}=V_{BD}=-5$	V, I _S =10nA	22	20		10		
Drain-Substrate Breakdown Voltage	$V_{(BR)DBO}$	$V_{GB}=0 V, I_{D}=10\mu$	A, Source Open	35	25		15		V
Source-Substrate Breakdown Voltage	$V_{(BR)SBO}$	V _{GB} =0 V, I _S =10μ	A, Drain Open	35	25		15		
			$V_{DS}=10 V$	0.4				10	nA
Drain-Source Leakage	$I_{DS(off)}$	$V_{GS} = V_{BS} = -5 \text{ V}$	$V_{DS} = 15 \text{ V}$	0.7					
			$V_{DS}=20 V$	0.9		10			
	$I_{\mathrm{SD(off)}}$	$V_{GD} = V_{BD} = -5 \text{ V}$	$V_{SD}=10 \text{ V}$	0.5				10	
Source-Drain Leakage			V _{SD} = 15 V	0.8					
			V _{SD} = 20 V	1		10			
Gate Leakage	I_{GBS}	$V_{DB} = V_{SB} = 0 \text{ V}, V_{GB} = 30 \text{ V}$		0.01		100		100	
Threshold Voltage	$V_{\text{GS(th)}}$	$V_{DS} = V_{GS}, I_D = I \mu A, V_{SB} = 0V$		0.8	0.1	1.5	0.1	1.5	V
	$\Gamma_{\mathrm{DS(on)}}$	$V_{SB} = 0 V$ $I_D = 1 mA$	SD5000 Series $V_{GS} = 5 \text{ V}$	58		70		70	
Drain-Source On-Resistance			SD5400 Series $V_{GS} = 5 \text{ V}$	60		75		75	Ω
Diani-Source On-Resistance			$V_{GS} = 10 \text{ V}$	38					
			$V_{GS} = 15 \text{ V}$	30					
			$V_{GS} = 20 \text{ V}$	26					
Resistance Match	$\Delta r_{DS(on)}$		$V_{GS} = 5 \text{ V}$	1		5		5	
Dynamic		,	T						
Forward Transconductance	\mathbf{g}_{fs}	$V_{DS} = 10 \text{ V}$ $V_{SB} = 0 \text{ V}$ $I_{D} = 20 \text{ mA}$ $f = 1 \text{ kHz}$	SD5000 Series	12	10		10		mS
			SD5400 Series	11	9		9		
Gate Node Capacitance	$C_{(GS+GD+GB)}$			2.5		3.5		3.5	
Drain Node Capacitance	$C_{(GD+DB)}$	$V_{DS} = 10 \text{ V}$	CD5000 C:	2.0		3		3	E
Source Node Capacitance	$C_{(GS+SB)}$	$f = 1 \text{ MHz}$ SD5000 Series $V_{GS} = V_{BS} = -15V$		3.7		5		5	pF
Reverse Transfer Capacitance	C_{rss}			0.2		0.5		0.5	
Crosstalk		f = 3 kHz		-107					dB


Specifications^a

						SD5001 SD5401		
Parameter	Symbol ^b	Test Conditions ^b		Min	Max	Min	Max	Unit
Switching								
Turn-On Time	$t_{d(on)}$	V_{SB} = 1-5 Vin, V_{GN} 0 to 5 V, R_G = 25 Ω	0.5		1		1	
	$t_{\rm r}$		0.6		1		1	
Turn-Off Time	$t_{d(off)}$	$V_{DD} = 5 \text{ V}, R_L = 680 \Omega$	2				ns	
	$t_{ m f}$		6					

Notes: DMCA

- a. $T_A = 25$ °C unless otherwise noted.
- b. B is the body (substrate) and $V_{\mbox{\scriptsize (BR)}}$ is breakdown.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Switching Time Test Circuit

NOTES:

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems develops and produces the highest performance semiconductors of their kind in the industry. Linear Systems, founded in 1987, uses patented and proprietary processes and designs to create its high performance discrete semiconductors. Expertise brought to the company is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company founder John H. Hall.